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LE'lTER TO THE EDITOR 

Universality classes of some aperiodic Ising models 

Craig A Tracyt 
Department of Mathematics, University of California, Davis, CA 95616, USA 

Received 15 March 1988 

Abstract. Numerical evidence is given to show that different aperiodic Ising models can 
have different universality classes. 

With the discovery of quasicrystals (Schechtman et al 1984) various physical 
phenomena, where the underlying lattice, interaction constants, masses, etc, are 
aperiodic, have been of considerable interest. One such example is to consider an 
Ising model on the Penrose lattice (Godriche et a1 1986, Aoyama and Odagaki 1987). 
Though this model has not been solved exactly, the approximate renormalisation group 
studies suggest that in the ferromagnetic case the specific heat has a logarithmic 
singularity and hence the ferromagnetic Penrose Ising model is predicted to be in the 
same universality class as the Onsager solution. 

A mathematically simpler problem is a two-dimensional ferromagnetic Ising model 
on a square lattice where the vertical bond strengths E,( j )  are chosen to be an aperiodic 
function in the column variable j .  The energy of interaction for such an Ising model is 

If this system has a logarithmic singularity in the specific heat, then it is physically 
reasonable to expect that the system defined by (1) can be obtained in the limit n -+ 00 

from an nth-order layered Ising model (Fisher 1968, Au-Yang and McCoy 1974, Hamm 
1977) defined by the energy of interaction 

n M + l  N M - l  n N 

E =-El aj ,kuj ,k+l  - c E 2 ( 1 ) u n j + / , k u n j + / + l , k .  
j = l  k = N + 1  j = O  / = I  k = - N + l  

The advantage of working with (2) is that Au-Yang and McCoy (1974) have shown 
for any nth-order layered Ising model (in the thermodynamic limit M, N + 00) when 
T + T, the specific heat diverges as 

c / k , =  -A(n;  { E , } )  lnll- T/T,l+O(l) (3) 
where an explicit expression for the amplitude A(n;  { E 2 } )  was derived by Au-Yang 
and McCoy. 

We now describe a layered Ising model coming from an inflation rule. Let d =  
{a, b, . . .} be a finite alphabet and let W ( d )  denote the words of finite length in d, 
then an inflation rule is a mapping T:  d + W ( d ) .  We define the word C,, = T"a with 
c,, the number of letters in C,, and cP; the number of times the letter a occurs in C,,. 

t Supported in part by grant no DMS 87-00867 of the National Science Foundation. 
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The infinite sequence generated by T is C, = lim,+, C,. For each letter a E sd we let 
E, denote a corresponding vertical bond strength and assume E, # Ep for a # p. The 
layering is defined by setting E 2 ( j )  = E, if thejth letter in the word C, is a. This with 
( 2 )  defines the c,-order layered Ising model for inflation rule T. For example, the 
Fibonacci layering is defined by ~4 = { a ,  b} ,  Tu = ab, Tb = a with C, = ab, C2 = aba, 
C3 = abaab, and in general C,,, = C,C,-, . The characteristic polynomial associated 
with the Fibonacci rule T is p T ( x )  = x 2 - x -  1 and the numbers c, are the Fibonacci 
numbers F,. It was proved (Tracy 1988) that for the Fibonacci layering the amplitude 
A(c,; { E 2 } )  approaches a finite non-zero limit (an explicit expression for the limiting 
amplitude was also derived). This means, given the assumption mentioned above, that 
the Fibonacci king model, defined by ( 1 )  with E 2 ( j )  = E, when j = a in C,, a = a or 
b, has a logarithmic singularity in the specific heat. 

A natural question is: to what extent is the Fibonacci Ising model typical of aperiodic 
Ising models? To examine this we look at two inflation rules on three letters due to 
Bombieri and Taylor (1986, 1987). 

Rule I. Ta=aac,  T b = a c  and T c = b  with C,=aac, C2=aacaacb, C 3 =  
aacaacbaacaacbac and C,,, = C’,( C;12C,-l) and associated characteristic polynomial 

Rule 11. Tu = aaaaab, Tb = bbbbc and Tc = a with C,,, = C~(C,!,C,)4C,-, and 

With an inflation T (Bombieri and Taylor 1986, 1987) we associate a one- 

p + )  = x 3  - 2 x 2 - x +  1 .  

characteristic polynomial p T ( x )  = x 3  - 9x2 + 20x - 1 .  

dimensional lattice with lattice points 

where u , ( k )  is the number of times the letter a occurs in the first k letters of C, and 
1, is the length of tile a (see Bombieri and Taylor (1986, 1987) for a discussion on 
making the lattice points extend to infinity in both directions). By a one-dimensional 
quasicrystal we mean an aperiodic sequence xk of lattice points whose Fourier transform 
is of the form 

where 6 denotes the Dirac delta function, g(5)  is some function (possibly 0) and A 
is a set which is not contained in the integral multiples of any single frequency. 
Bombieri and Taylor (1986,1987) show that any inflation rule T produces a quasicrystal 
only if the characteristic polynomial p T ( x )  has just one root greater than one in absolute 
value. For both the Fibonacci inflation rule and inflation rule I, the characteristic 
polynomial has only one root of absolute value greater than one whereas inflation rule 
I1 has two such roots. 

For an inflation rule T and word C,, = T”a define z, = tanh(pcE,), y ,  = z ; ,  z1 = 
tanh(&E,) with pc the inverse critical temperature. Then the amplitude in (3) is 

where 
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where 

AN, ( 1, m, n ) = N ,  (1, m, n )  - R, ( m )  

1 + m (including 1 and 1 + m )  in layering C,, 

in a segment of length ( m  + 1) in a C,, layering. 

( 7 )  

(8) 

(9) 

No(Z, m, n )  =the number of times letter a appears between I and 

Nu(m) = ( m +  l)cz/c, =the average number of times letter a appears 

The numerator in (5) clearly has a limit as n + 00. The question is: does I,, exist? 
The numerical evaluation of ( 6 )  suggests that as n + 00 the quantity I,, converges 

to a finite non-zero limit for inflation rule I whereas it diverges to +CO for inflation 
rule 11. Further evidence of the difference of inflation rules I and I1 can be obtained 
by examining 

1 c,, 

c, / = I  
var(N,) =- 2 (AN,(Z, m, n) ) ’ .  

For inflation rule I, var(N,) is bounded in m whereas for inflation rule 11, equation 
(10) more or less increases with increasing m. For the Fibonacci inflation rule, 
var( N , )  = { N u } (  1 - { N , } )  with { x }  the fractional part of x and the range of N, (1, m, n )  
is [ N , ]  and [N,]+1 where [ X I  is the greatest integer function (Tracy 1988). From 
explicit computation for 1 7 ,  it is conjectured that for all inflation levels n the 
range of Nu( Z, m, n )  for inflation rule I is [ N , ] ,  [Nu] * 1, [ Nu] + 2 .  From low values 
of n it is clear that possible values of “ ( I ,  m, n )  for inflation rule I1 increase with 
increasing m. Thus inflation rule I is similar to the Fibonacci rule whereas inflation 
rule I1 is qualitatively different. 

Thus on the basis of the numerical work we conjecture: (i) the singularity of the 
aperiodic Ising model (1) defined by inflation rule I has a logarithmic singularity in 
the specific heat, (ii) the amplitude (5) diverges to zero for inflation rule I1 which is 
interpreted to mean that the aperiodic Ising model (1) defined by inflation rule I1 does 
not have a logarithmic singularity in the specific heat. 

It is interesting to note that the logarithmic singularity in the specific heat appears 
only in the cases where the inflation rule T generates a quasicrystal. We conjecture 
that it is a general phenomenon that the ferromagnetic aperiodic Ising model (1) has 
a logarithmic singularity in the specific heat only when the characteristic polynomial 
p T ( x )  associated with the inflation rule T has only one root greater than one in absolute 
value. Certainly, the clarification of the universality classes of various aperiodic Ising 
models deserves further study. 

n 
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